
3 Part 2. Surfaces & planes 2021-22

3.9 Tangent Spaces and Planes

Definition 1 A (differentiable) curve in Rn is the image of a C1-function

γ : I → Rn, t 7→ (γ1(t) , γ2(t) , ..., γn(t))
T

, from an interval I ⊆ R.

If the γ is injective we say the curve is simple.

There is a misuse of notation for I use γ for both the function and the
image of the function.

Definition 2 A differentiable curve is regular if γ ′(t) 6= 0 for all t ∈ I.
A singular point is one where γ ′(t) = 0.

In the next definition I have kept the properties of the set S vague (other
than it contains a curve), but think of it as a surface.

Definition 3 Let S ⊆ Rn, p ∈ S and let γ : (−1, 1)→ S be a regular curve
lying within S such that γ (0) = p. Then

• γ ′(0) is a tangent vector to S at p,

• p + γ ′(0) t, t ∈ R, is a tangent line to S at p.

Definition 4 The Tangent Space of S at p is the set of all tangent
vectors to S at p ∈ S and is denoted by Tp(S).

You should think of the vectors u in the Tangent space as vectors with a
point of application p. They might more correctly be written as up, though
we will not do this.

We call this the Tangent Space, but we should prove that it is, in fact, a
vector space. We know that at every surface is locally a graph so it suffices
to prove the following.

Theorem 5 Let the surface S ⊆ Rn be given by a graph, so

S =

{(
u

φ(u)

)
: u ∈ U

}
,

for some C1-function, φ : U ⊆ Rr → Rn−r. Let p ∈ S, in which case

p =

(
q

φ (q)

)
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for some q ∈ U. Then

Tp (S) =

{(
t

Jφ(q) t

)
: t ∈ Rr

}
. (1)

Proof Recall the notation

F(u) =

(
u

φ(u)

)
,

(in fact we used Fφ but I now drop the subscript) and the fact that

JF(u) =

(
Ir

Jφ(u)

)
. (2)

In this notation (1) becomes

Tp (S) = {JF(q) t : t ∈ Rr} . (3)

The proof of such a set equality requires the proofs of two set inclusions.

(⊇) Let v ∈ {JF(q) t : t ∈ Rr}, in which case there exists y ∈ Rr such that
v = JF(q) y. To conclude that v ∈ Tp (S) we have to find a curve γ lying
in S such that γ(0) = p and γ ′(0) = v.

Since q ∈ U and U is an open set there exists η > 0 such that if |t| < η
then q + ty ∈ U . For such t define γ : R→ Rn, by

γ(t) = F(q + ty) .

This is a curve lying within S by the definition of S as the image of F. Also
γ(0) = F(q) = p. For the derivative, we have that γ is a composition when
the Chain Rule gives

γ ′(t) = JF(q + ty)
d

dt
(q + ty) = JF(q + ty) y,

for |t| < η. Choosing t = 0 gives

γ ′(0) = JF(q) y = v,

since v = JF(q) y from above. Hence v ∈ Tp (S). True for all such v means

Tp(S) ⊇ {JF(q) t : t ∈ Rr} .
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(⊆) Let v ∈ Tp(S). So there exists γ : (−1, 1) → S, a regular curve such
that γ(0) = p and γ ′(0) = v. Write

γ(t) =

(
α(t)

β(t)

)
,

where, in the components of γ,

α(t) =

 γ1(t)
...

γr(t)

 ∈ Rr and β(t) =

 γr+1(t)
...

γn(t)

 ∈ Rn−r.

But γ(t) ∈ S means that

γ(t) =

(
α(t)

β(t)

)
=

(
α(t)

φ(α(t))

)
= F(α(t)) .

Importantly γ is a C1 function means that α is a C1 function. Thus we can
apply the Chain Rule

γ ′(t) =
d

dt
F(α (t)) = JF(α(t))

d

dt
α(t) .

Choose t = 0. Note that(
q

φ(q)

)
= p = γ(0) =

(
α(0)

β(0)

)
and so α(0) = q. Therefore

v = γ ′(0) = JF(α(0))α′(0) = JF(q)α′(0) .

Here α′(0) ∈ Rr so v = JF(q) t for some t ∈ Rr. Hence

Tp (S) ⊆ {JF(q) t : t ∈ Rr} .

Finally we must have equality of sets. �

The conclusion of Theorem 5 may be written in a number of ways.

If a surface is given as a graph of the function φ then the Tangent
Space is

i. the graph of the linear function t 7→ Jφ (q) t.

ii. the image of the linear map t 7→ JF(q) t.
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Corollary 6 Let S ⊆ Rn be a surface given by a graph of a C1-function
φ : U ⊆ Rr → Rn−r. Let p ∈ S. Then Tp (S) is a vector space of dimension
r with a basis of the columns of(

Ir

Jφ(q)

)
.

Proof immediate. �

Now that we know that Tp (S) is a vector space we can make the following
definition.

Definition 7 The Tangent Plane to S at p is the set of all tangent
lines to S at p. Equivalently, this is

p + Tp (S) = {p + v : v ∈ Tp(S)} .

Corollary 8 With the notation of Theorem 5 the Tangent Plane to S, the
graph of φ, at p ∈ S is the graph of the affine function

u 7→ φ(q) + Jφ(q)(u− q) .

Proof From (1) and the definition of the Tangent plane at p ∈ S,

p + Tp (S) =

{(
q

φ(q)

)
+

(
Ir

Jφ(q)

)
t : t ∈ Rr

}

=

{(
q + t

φ(q) + Jφ(q) t

)
: t ∈ Rr

}

=

{(
u

φ(q) + Jφ(q)(u− q)

)
: u ∈ Rr

}
,

for as t ranges over Rr then so does u = q + t. �

Definition 9 If f : U ⊆ Rn → Rm is Fréchet differentiable at a ∈ U then
the best affine approximation to f at a is

f(a) + Jf(a)(x− a) ,

for x ∈ U .
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Why is it the best? Let A(x) = f(a) + Jf(a)(x− a). This is an affine
function and an approximation to f in that

lim
x→a

(f(x)−A(x)) = 0,

But, since f is Fréchet differentiable at a, we have

lim
t→0

(
f(a + t)− f(a)− Jf(a)t

|t|

)
= 0 (4)

Also, by the uniqueness of the Fréchet derivative, Jf(a) t is the only linear
function for which (4) holds. Thus A(x) is the only affine function for which

lim
x→a

(
f(x)−A(x)

|x− a|

)
= 0.

It is for this reason it is called the best affine approximation.

Corollary 8 says that the Tangent Plane to the graph of φ at p is
the graph of the best affine approximation to φ at p.

Example 10 Let φ : R2 → R2 be given by

φ(x) =

(
x4 − y3
xy

)
.

Find the Tangent Space and Tangent Plane to the graph of φ at p = (2, 2, 8, 4)T ,
a point on the graph. Give your answers as graphs. Can you give the answers
as level sets?

Solution in Problems Class First note that the point p can be written as

p =


2
2
6
4

 =

(
q

φ(q)

)
,

with q = (2, 2)T .

Next, from above the Tangent Space is the graph of the linear func-
tion x 7→ Jφ(q) x while the Tangent Plane is the graph of the best affine
approximation to φ at q.
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For both the Space and Plane we need

Jφ(q) =

(
4x3 −3y2

y x

)
x=q

=

(
32 −12
2 2

)
.

Thus the Tangent space is the graph

Tp (S) =

{(
x

Jφ(q) x

)
: x ∈ R2

}
.

Here

Jφ(q) x =

(
32 −12
2 2

)(
x
y

)
=

(
32x− 12y
2x+ 2y

)
.

Hence

Tp(S) =




x
y

32x− 12y
2x+ 2y

 : x, y ∈ R

 =

x


1
0
32
2

+ y


0
1
−12

2

 : x, y ∈ R

 .

(5)

Thus (1, 0, 32, 2)T , (0, 1,−12, 2)T , the columns of
(

I2
Jφ(q)

)
, form a basis for

Tp(S).

We have the result that the Tangent plane is the graph of the best affine
approximation to φ at q. This approximation is

φ(q) + Jφ(q)(x− q) =

(
6
4

)
+

(
32 −12
2 2

)((
x
y

)
−
(

2
2

))

=

(
32x− 12y − 34

2x+ 2y − 4

)
Hence the Tangent plane, which is the graph of the best affine approximation,
is 


x
y

32x− 12y − 34
2x+ 2y − 4

 : x, y ∈ R

 . (6)

As a level set the Tangent Space is, from (5), the set of points (x, y, u, v)T ∈
R4 satisfying

32x− 12y − u = 0
2x+ 2y − v = 0.
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As a level set the Tangent Plane is, from (6), the set of points from R4

satisfying
32x− 12y − u = 34

2x+ 2y − v = 4.

�

Note Recall that the definition of the Tangent Plane is p + Tp(S). In the
above example this would lead, from (5) , to


x+ 2
y + 2

32x− 12y + 8
2x+ 2y + 4

 : x, y ∈ R

 .

Make sure you understand why this is the same set of points as (6). An
advantage of (6) is that it is simpler to use it to derive the level set.

In conclusion

If a surface is given as a graph of φ then

• the Tangent Space is given by the graph of the linear map
dφq : t 7→ Jφ (q) t.

• the Tangent Plane is given by the graph of the best affine
approximation to φ at q, i.e. φ (q) + Jφ (q) (t− q).

We can now find the Tangent Space and plane for a surface given as a
graph. We will use this to find the Space and plane for a surface either given
as a level set or parametrically.
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3.10 Tangent Space for a Level Set Surface

Theorem 11 Let the surface S be given as a level set

S =
{
x ∈ U : f(x) = 0 and Jf(x) is of full-rank

}
,

for some C1-function f : U ⊆ Rn → Rm. Let p ∈ S. Then

Tp (S) = {x ∈ Rn : Jf(p) x = 0} , (7)

and the rows of Jf(p) are a basis for Tp (S)⊥.

Proof not given, see Appendix .

Idea By, if necessary, relabelling the axes in Rn we can assume that the final
m columns of Jf(p) are linearly independent. Then, by the Implicit Function
Theorem there exist open sets V ⊆ Rn−m, and W ⊆ U ⊆ Rn with p ∈ W ,
along with φ : V → Rm such that

S ∩W =

{(
v

φ(v)

)
: v ∈ V

}
.

Theorem 5 then implies

Tp (S) =

{(
t

Jφ(q) t

)
: t ∈ Rn−m

}
,

where q ∈ V satisfies p =
( q
φ(q)

)
.

All that remains is to show that this equals the right hand side of (7). For
v ∈ V we have

( v
φ(v)

)
∈ S and so

f

((
v

φ(v)

))
= 0.

Apply the Chain Rule; see Appendix.

The fact that the rows of Jf(p) are a basis for Tp (S)⊥ follows from earlier
results on planes. �

Corollary 12 Under the conditions of Theorem 11 the Tangent Plane to S
at p is

{p + v : v ∈ Rn and Jf(p) v = 0} = {x ∈ Rn : Jf(p)(x− p) = 0} .
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Example 13 Consider the level set of points in R4 satisfying

x2 + y2 − 2uv + 2xv = 9

2xy − uy + vx+ uv = 0.

Find the Tangent Space and plane at p = (1, 0,−1, 2)T .

Solution in Problems Class The Jacobian matrix at p is

Jf(p) =

(
6 0 −4 4
2 3 2 0

)
. (8)

This is of full-rank and so Tp (S) is the set of x = (x, y, u, v) ∈ R4 such that
Jf(p) x = 0, i.e.

6x− 4u+ 4v = 0

2x+ 3y + 2u = 0.
(9)

The Tangent Plane is the set of x such that Jf(p) (x− p) = 0, i.e.

6x− 4u+ 4v = 18

2x+ 3y + 2u = 0.

�

Aside Left to Tutorial As noted above the rows of Jf (p) form a basis of the
Normal Space Tp (S)⊥. So in this example (6, 0,−4, 4)T and (2, 3, 2, 0)T are

a basis for Tp (S)⊥ . How to use a basis for Tp(S)⊥ to find a basis for Tp (S)?

Method 1: The Implicit Function Theorem tells us the level set is locally
the graph of a function φ. Then the columns of

( In−m

Jφ(q)

)
give a basis of Tp (S).

But the Implicit Function Theorem is an existence result, it tells us that φ
exists but not what it is. Nonetheless we can still calculate Jφ(q) .

We do this for the example above. Since the last two columns of (8) are
linearly independent the u and v can be given as C1-functions of x and y (in
fact u = φ1 and v = φ2).

Differentiate f(x) = 0 with respect to x.

2x− 2
∂u

∂x
v − 2u

∂v

∂x
+ 2v + 2x

∂v

∂x
= 0

2y − ∂u

∂x
y +

∂v

∂x
x+ v +

∂u

∂x
v + u

∂v

∂x
= 0.
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Evaluate at p = (1, 0,−1, 2)T .

2− 4
∂u

∂x
+ 2

∂v

∂x
+ 4 + 2

∂v

∂x
= 0

∂v

∂x
+ 2 + 2

∂u

∂x
− ∂v

∂x
= 0.

Solve,
∂u

∂x
= −1 and

∂v

∂x
= −5

2
.

Repeat but with respect to y to find

∂u

∂y
= −3

2
and

∂v

∂y
= −3

2
.

Then, in this example

(
In−m

Jφ(q)

)
=


1 0
0 1
∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

 =


1 0
0 1
−1 −3/2
−5/2 −3/1

 .

Therefore (1, 0,−1,−5/2)T and (0, 1,−3/2,−3/2)T are a basis for Tp (S) .

Perhaps a ‘better’ pair might be (−2, 0, 2, 5)T and (0,−2, 3, 3)T . (Check
that these two vectors are both orthogonal to (6, 0,−4, 4)T and (2, 3, 2, 0)T ).

Method 2: Instead of using the Implicit Function Theorem to say the origi-
nal level set is locally a graph write the solution set as a graph. For example
solve (9) for u and v as functions of x and y, i.e. add twice the second
equation to the first to get

10x+ 6y + 4v = 0

2x+ 3y + 2u = 0.

We can then express the Tangent Space as the graph


x

y

−x− 3y/2

−5x/2− 3y/2

 :

(
x

y

)
∈ R2

 .
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But 
x

y

−x− 3y/2

−5x/2− 3y/2

 = x


1

0

−1

−5/2

+ y


0

1

−3/2

−3/2

 .

This method is formalised in the Appendix.

Why does the second method appear to be quicker? Because it uses
Theorem 11; the proof of this requires the Chain Rule which is what we
essentially did in Method 1.

End of aside.

For a further example

Example 14 Let S ⊆ R4 be given by the system of equations

x4 − y3 − u = 0

xy − v = 0,

for (x, y, u, v)T ∈ R4. Find the Tangent plane at p = (2, 2, 8, 4)T ∈ S.

Solution in Problems Class. The Jacobian matrix is(
4x3 −3y2 −1 0

y x 0 −1

)
x=p

=

(
32 −12 −1 0

2 2 0 −1

)
at (2, 2, 8, 4)T . This is well-defined and of full-rank. Then the Tangent Plane
is the set of points x = (x, y, u, v)T satisfying Jf(p)(x− p) = 0, i.e.

0 =

(
32 −12 −1 0

2 2 0 −1

)
x− 2
y − 2
u− 8
v − 4

 =

(
32x− 12y − u− 32

2x+ 2y − v − 4

)
.

Hence the tangent plane is the solution set to the system

32x− 12y − u = 32,

2x+ 2y − v = 4.

�

Aside In this example (32,−12,−1, 0)T and (2, 2, 0,−1)T are a basis for
Tp(S)⊥ . As in the aside above, we can find (1, 0, 32, 2)T and (0, 1,−12, 2)T

as a basis for Tp(S) .

End of aside.
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For a conclusion recall that if f(x) = 0 then x is in the kernel of f . In
this language we have

If the surface is given as the kernel of the map x 7→ f (x) then

• the Tangent Space is the kernel of the linear map dfp : x 7→ Jf (p) x.

• the Tangent Plane is the kernel of the affine map x 7→ Jf (p) (x− p) .

For an alternative conclusion note that if x satisfies f(x) = 0 then x
is satisfying a system of equations f i(x) = 0 for 1 ≤ i ≤ m. Recall that
the rows of a Jacobian matrix are the transposes of the gradient vector for
each component function f i. Thus if x ∈ Tp (S), so Jf(p) x = 0, then

∇f i(p)T x = 0, i.e. ∇f i(p) • x = 0 for 1 ≤ i ≤ m. Each of these is a linear
equation in x. Thus

If a surface is given as a system of equations, f i (x) = 0 for 1 ≤
i ≤ m then

• the Tangent Space can be written as a system of linear equations
∇f i (p) • x = 0 for 1 ≤ i ≤ m.

• the Tangent Plane can be written as a system of linear equations
∇f i (p) • (x− p) = 0 for 1 ≤ i ≤ m.
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3.11 Tangent Space for a Parametric Surface.

Theorem 5 can be written as

S = {F(u) : u ∈ U} =⇒ Tp(S) = {JF(q) t : t ∈ Rr} ,

in the particular case when F is the image of a graph of a function φ. For a
general F we have to use the fact that a surface given parametrically, i.e. as
the image of a function, is locally a graph. We can then apply Theorem 5.

Theorem 15 Let the surface S be given parametrically as

S =
{
F(u) : u ∈ U and JF(u) is of full-rank

}
,

of a C1-function F : U ⊆ Rr → Rn. Let p ∈ S, so p = F(q) for some q ∈ U .
Then

Tp (S) = {JF(q) t : t ∈ Rr} , (10)

and the columns of JF(q) are a basis for Tp (S).

Proof By relabelling if necessary the axes in Rn we can assume that the
first r rows of JF(q) are linearly independent. Then, by the Inverse Function
Theorem there exist open sets V : q ∈ V ⊆ U and T ⊆ Rr with a C1-function
φ : T → Rn−r : {

F(u) : u ∈ V
}

=

{(
t

φ(t)

)
: t ∈ T

}
Since q ∈ V we have that p = F(q) lies in this graph, i.e.

p =

(
r

φ(r)

)
for some r ∈ T. Theorem 5 then implies

Tp (S) =

{(
y

Jφ(r) y

)
: y ∈ Rr

}
. (11)

Recalling the proof of Corollary 23 in the previous notes we write

F(u) =

(
h(u)
k(u)

)
,

where h : U ⊆ Rr → Rr and k : U ⊆ Rr → Rn−r. If u ∈ V then F(u) is
given by the graph of φ and so k(u) = φ(h(u)). Apply the Chain Rule to
get

Jk(u) = Jφ(h(u)) Jh(u). (12)
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Combining some of the above steps we have(
h(q)
k(q)

)
= F(q) = p =

(
r

φ(r)

)
.

In particular h(q) = r. Choosing u = q in (12) then gives Jk(q) =
Jφ(r) Jh(q).

The assumption that the first r rows of JF(q) are linearly independent
means that Jh(q) is an invertible matrix. Thus, within (11), we have(

y

Jφ(r) y

)
=

(
Ir

Jφ(r)

)
y =

(
Ir

Jφ(r)

)
Jh(q)Jh(q)−1y

=

(
Jh(q)

Jφ(r) Jh(q)

)
Jh(q)−1y

=

(
Jh(q)

Jk(q)

)
Jh(q)−1y

= JF(q) x,

having changed variables from y to x = Jh(q)−1y. Then the conclusion,
(10), follows from (11).

The fact that the columns for JF(q) are a basis for Tp (S) follows from
earlier work on planes. �

Corollary 16 Under the conditions of Theorem 15 the Tangent Plane to the
image set of F(t) , t ∈ U at p = F(q) is the image set of the Best Affine
Approximation to F at q.

Proof Problems Class By Theorem 15,

p + Tp(S) = F(q) + {JF(q) t : t ∈ Rr}

= {F(q) + JF(q) t : t ∈ Rr}

= {F(q) + JF(q) (w − q) : w ∈ Rr} , (13)

for as t ranges over Rn−m then so does w = t+q. Here F(q)+JF(q) (w − q)
is the best affine approximation to F(w) at w = q. �
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Example 17 Find the Tangent Space & Plane at (3, 1, 4, 1)T to the param-
eterized surface 


x2 + y
x− y2

5− y + xy
1 + x+ xy

 : x2 + y2 < 10

 .

Solution in Problems Class. The point p = (3, 1, 4, 1)T on the surface arises
from q = (2,−1)T . The Jacobian matrix at q is

JF (q) =


2x 1
1 −2y
y x− 1

1 + y x


x=q

=


4 1
1 2
−1 1

0 2

 .

The columns are linearly independent so JF(q) is of full rank and the two
columns span the Tangent Space. Hence

Tp (S) =




4 1
1 2
−1 1

0 2

( x
y

)
: x, y ∈ R

 =




4x+ y
x+ 2y
−x+ y

2y

 : x, y ∈ R

 .

The Tangent Plane is given parametrically as the best affine approxima-
tion to F at q, i.e. F(q) + JF(q) (x− q), which is

3
1
4
1

+


4 1
1 2
−1 1

0 2

(( x
y

)
−
(

2
−1

))
=


4x+ y − 4
x+ 2y + 1
−x+ y + 7

2y + 3

 ,

for (x, y)T ∈ R2. �

In conclusion

If the surface is given parametrically as the image of a map u 7→ F (u)
then

• the Tangent Space is the image of the linear map dFq : t 7→
JF (q) t,

• the Tangent Plane is the image of the affine map t 7→ F (q) +
JF (q) (t− q), the best affine approximation to F.
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3.12 Conclusion

For a surface S ⊆ Rn given as a graph of the C1-function φ : U ⊆ Rr → Rn−r,

• the Tangent Space is given by the graph of the linear map t 7→
Jφ(q) t,

• the Tangent Plane is given by the graph of the best affine approxi-
mation to φ at q.

For a surface S ⊆ Rn given by the image set of a C1-function F : U ⊆ Rr →
Rn,

• the Tangent Space is the image set of the linear map t 7→ JF(q) t
and has a basis of the columns of JF(q), which are the directional
derivatives diF(q) , 1≤ i≤n−m,

• the Tangent Plane is the image set of the best affine approximation
to F at q.

For a surface S ⊆ Rn given by the level set f−1(0) where f : Rn → Rm,

• the Tangent Space is the level set of the linear function t 7→ Jf(p) t,

• the Normal Space has a basis of the rows of Jf(p), which are the
gradient vectors of the component functions, i.e. Of i (p), 1≤ i≤n−m,

the Tangent Plane is the level set Jf(p) (x− p) = 0.

16



Appendix for Section 3 part 2

1. Definition of Tangent Plane

Recall

Definition 7 The Tangent plane to S at p is the set of all tangent lines to
S at p.

I claimed that this plane was, in fact, equal to

p + Tp(S) = {p + v : v ∈ Tp(S)} .

But this requires justification.

If p + v ∈ p + Tp(S) then, by definition of Tp(S), there exists a curve α
in S with α(0) = p and α′(0) = v. Then p + v = α(0) + α′(0) which is a
point on the tangent line α(0)+α′(0) t, t ∈ R. Hence p+Tp (S) is contained
within the set of all tangent lines.

Conversely, given a point on a Tangent Line, i.e. α(0) + α′(0) y for
some curve α and y ∈ R, define a new curve β(t) = α(yt). Then β(0) =
α(0) = p and β′(t) = yα′(yt) so yα′(0) = β′(0) ∈ Tp(S) , since the Tangent
Space contains, by definition, all tangent vectors such as β′(0). Thus α(0) +
α′(0) y ∈ p + Tp(S). Hence the set of all tangent lines lies in p + Tp(S).

2. Tangent Space for a Level Set

We now give the proof of Theorem 11. Recall from earlier appendices
that, in a level set f−1(0) with f : U ⊆ Rn → Rm and p ∈ f−1(0) such that
Jf(p) is of full-rank, we can permute the coordinates of Rn and choose f so
that

Jf(p) = (A | Im) , (14)

for some m×(n−m) matrix A.

Theorem 11 Let

S =
{
x ∈ U : f(x) = 0 and Jf(x) is of full-rank

}
,

for some C1-function f : U ⊆ Rn → Rm. Let p ∈ S and assume (14) holds.
Then

Tp (S) = {x ∈ Rn : Jf(p) x = 0} . (15)
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Proof Because of (14) the final m columns of Jf(p) are linearly independent
and we can apply the Implicit Function Theorem. Hence there exists

• an open set V ⊆ Rn−m,

• a C1-function φ : V → Rm and

• an open set W ⊆ Rn with p ∈ W

such that

S ∩W =

{(
v

φ(v)

)
: v ∈ V

}
. (16)

Since p ∈ S ∩W we have

p =

(
q

φ(q)

)
for some q ∈V . Then by Theorem 5

Tp(S) =

{(
t

Jφ(q) t

)
: t ∈ Rn−m

}
. (17)

We now wish to write this in the form (15) .

From (16) we see that for v ∈ V we have(
v

φ(v)

)
∈ S,

which, by the definition of S, holds if and only if

f

(
v

φ(v)

)
= 0.

The Chain Rule gives

Jf

(
v

φ(v)

)(
In−m

Jφ(v)

)
= 0.

Choose v = q to get

Jf(p)

(
In−m

Jφ(q)

)
= 0. (18)

Yet, by (14),
Jf(p) = (A | Im) ,

18



for some m×(n−m) matrix A. Then (18) gives

0 = (A | Im)

(
In−m

Jφ(q)

)
.

Multiplied out this gives A+ Jφ(q) = 0 which, in (14) gives

Jf(p) =
(
− Jφ(q) | Im

)
.

Write x ∈ Rn as

x =

(
t

y

)
,

with t ∈ Rn−m, y ∈ Rm. Then Jf(p) x = 0 if, and only if,

0 = Jf(p) x =
(
− Jφ(q) | Im

)( t

y

)
.

That is 0 = −Jφ(q) t+Imy, i.e. y = Jφ(q) t, so

x =

(
t

Jφ(q) t

)
.

Hence, returning to (17) ,

Tp (S) =

{(
t

Jφ(q) t

)
: t ∈ Rn−m

}
= {x ∈ Rn : Jf(p) x = 0} .

�

3 More Examples

An example of the use of the Implicit Function Theorem:

Example 18 Consider the level set of points in R4 satisfying

x2 + y2 − 2uv + 2xv = 9

2xy − uy + vx+ uv = 0.

A solution of the system is (1, 0,−1, 2)T . Show that in some open set of R2

containing (x, y)T = (1, 0)T the solutions of this system can be given by some
C1-functions u = u(x, y), v = v(x, y).

Can we write the solutions as x = x(u, v), y = y(u, v) and if so in the
region of what point in R2?
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Solution With w = (x, y, u, v)T ∈ R4 this level set is f(w) = 0 where
f : R4 → R2 is given by

f(w) =

(
x2 + y2 − 2uv + 2xv − 9

2xy − uy + vx+ uv

)
.

At p = (1, 0,−1, 2)T the Jacobian matrix is

Jf(p) =

(
2x+ 2v 2y −2v −2u+ 2x
2y + v 2x− u −y + v x+ u

)
x=p

=

(
6 0 −4 4
2 3 2 0

)
.

The last two columns (−4, 2)T and (4, 0)T are linearly independent. So no
reordering of columns are necessary to apply the Implicit Function Theorem.

We need to write p =
(
pT
0 ,p

T
1

)T
with p0 ∈ R2 in which case we must have

p0 = (1, 0)T .

Then the Implicit Function Theorem says there exists, an open set V :
p0 ∈ V ⊆ R2, a C1-function φ : V → R2 and an open set W ⊆ U ⊆ R4

containing p such that f (w) = 0, w ∈ W iff

w =

(
x

φ(x)

)
with x ∈ V.

That is,

w =


x
y

φ1(x, y)
φ2(x, y)

 with

(
x
y

)
∈ V.

So the solution to the Example is that we choose u = φ1 and v = φ2, the
component functions of the φ whose existence is assured by the Implicit
Function Theorem.

Returning to the Jacobian Matrix Jf(p), we see that the first two columns,
(6, 2)T and (0, 3)T are linearly independent. We could permute the coordi-
nates in R4 to ensure these columns were the last two in the Jacobian matrix,
and then the conclusion of the Implicit Function Theorem would be that
these two variables can be given as functions of the remaining variables, i.e.
x and y can be given as C1 functions of u and v. The values of u and v in
p are −1 and 2, so x = x(u, v) and y = y(u, v) for (u, v)T in some open set
V : (−1, 2)T ∈ V ⊆ R2. �
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And another example:

Example 19 Find the Tangent Space and Plane to the surface given by the
level set {

x3 − xyu− uv2 + v3 = 2
xu− yv = 3

at the point (x, y, u, v)T = (1,−1, 2, 1)T . Find also a basis for the Tangent
Space.

Solution Let x = (x, y, u, v)T and p = (1,−1, 2, 1)T . Then

Jf(p) =

(
3x2 − yu −xu −xy − v2 −2uv + 3v2

u −v x −y

)∣∣∣∣
x=p

=

(
5 −2 0 −1
2 −1 1 1

)
.

The rows are linearly independent so Jf(p) is of full-rank. Then the
Tangent Space is the level set of the linear function x 7→ Jf(p) x;

Tp(S) =
{
x ∈ R4 : Jf(p) x = 0

}
=

{
(x, y, u, v)T :

5x− 2y − v = 0
2x− y + u+ v = 0.

}
.

The Tangent plane is the level set of the best affine approximation to f
at p, which is f(p) + Jf(p) (x− p) = Jf(p) (x− p) since f(p) = 0, so{

x ∈ R4 : Jf(p) (x− p) = 0
}

=

{
(x, y, u, v)T :

5x− 2y − v = 6
2x− y + u+ v = 6.

}
.

Look back in the Appendix for part 1 of Section 3 to see how to find
the basis of a plane given as a level set. To start, write the Jacobian matrix
Jf(p) in the form (G | I2). The last two columns of Jf(p) are linearly inde-
pendent so we can multiply by the inverse of ( 0 −1

1 1 ). But this is equivalent
to constructing the identity matrix within Jf(p) by row operations:(

5 −2 0 −1
2 −1 1 1

)
r1↔r2−→

(
2 −1 1 1
5 −2 0 −1

)
r1→r1+r2−→

(
7 −3 1 0
5 −2 0 −1

)
r2→−r2−→

(
7 −3 1 0
−5 2 0 1

)
.

This is of the form (G | I2) in which case, by the theory in the previous
appendix,

Tp(S) =

{(
I2
−G

)
t : t ∈ R2

}
=




2
t

−7s+ 3t
5s− 2t

 :

(
s
t

)
∈ R2

 .
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so the basis for Tp(S) consists of the columns of

(
I2

−G

)
=


1 0
0 1
−7 3

5 −2

 ,

i.e. v1 = (1, 0,−7, 5)T and v2 = (0, 1, 3,−2)T . (As a check confirm that v1

and v2 are orthogonal to (5,−2, 0,−1)T and (2,−1, 1, 1)T , the rows of the
Jacobian matrix Jf(p) and thus a basis for Tp (S)⊥ .) �

Second to last observation on this example Go back to the system for
the Tangent plane

5x− 2y − v − 6 = 0,

2x− y + u+ v − 6 = 0,

and solve for u and v (perhaps add the two equations to remove v from the
second) so

v = 5x− 2y − 6,

u = −7x+ 3y + 12.

Then the plane can be written as a graph
x
y

−7x+ 3y + 12
5x− 2y − 6

 =


0
0
12
6

+ x


1
0
−7

5

+ y


0
1
3
−2

 .

We see the same basis vectors v1 = (1, 0,−7, 5)T and v2 = (0, 1, 3,−2)T .

Last observation on this example An ad hoc method to find a basis of
Tp(S) given a basis of Tp(S)⊥:

To find a basis for the tangent space we first note that because Jf(p) is of
full-rank, the Normal Space is of dimension 2 within R4, which has dimension
4. Hence the Tangent Space will be of dimension 4 − 2 = 2. Thus we need
to find two linearly independent vectors orthogonal to both v1 and v2.

Recall that if v,w ∈ R3 then the vector product v ×w is orthogonal to
both v and w. Given a,b ∈ R4 write a = (v, c) , c ∈ R and b = (w, d) , d ∈
R. Then (v ×w, 0) is orthogonal to both a and b.
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In our case v1 = (5,−2, 0, 1)T and v2 = (2,−1, 1, 1)T are a basis for
Tp (S)⊥. Then (5,−2, 0)×(2,−1, 1) = (−2,−5,−1) and thus (−2,−5,−1, 0)T

will be orthogonal to both v1 and v2.

Repeating this but taking, say, the 2nd, 3rd and 4th coordinates. Then
(−2, 0, 1) × (−1, 1, 1) = (1, 3,−2) and so (0, 1, 3,−2)T will be orthogonal to
both v1 and v2.

Finally, (2, 5, 1, 0)T and (0, 1, 3,−2)T are linearly independent, thus they
constitute a basis for Tangent Space at p. �

4. Dimension

I have defined surfaces parametrically as the image set of functions F :
Rr → Rn. I have also defined surfaces as level sets, the kernel of functions
f : Rn → Rm. But I have not defined the dimension of a surface. Yet
at every point of a surface we have a Tangent Space which does have a
dimension. Further, because of the assumption in the definition of surface
that the Jacobian matrix is of full-rank, the dimension of the Tangent Space
is the same at all points on the surface; for parametric surfaces it is r and
for level sets it is n −m. It is not unreasonable that the dimension of the
Tangent planes is taken as the dimension of the Surface. This is why, if you
have not already noticed, you should think of n −m and r as equal and so
f : Rn → Rn−r.
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